Endocarditis

February 22, 2008
David Stultz, MD
Southwest Cardiology, Inc.
Topics to be covered

- Epidemiology
- Microbiology
- Clinical presentation
- Physical Exam Findings
- Diagnostic Imaging
- Overview of Treatment
- Complications
- Indications for Surgery
- Prognosis
- Prophylaxis
- Pearls for the Boards
Endocarditis is...

- An infection of the heart, typically involving valve leaflets
 - May also involve
 - Chordae tendinae
 - Mural endocardium
 - Site of a septal defect
 - Arteriovenous shunts
 - Patent ductus arteriosus
 - Intracardiac hardware
A vegetation is...

- A collection of
 - Platelets
 - Fibrin
 - Bacteria
 - Inflammatory cells
Endocarditis looks like...
Epidemiology

- Incidence of 2.4-11.6 per 100,000 patient years
- Stable or increasing in incidence
- Higher incidence in urban populations
- Elderly at 4-6x risk
- Median age 47-69
- Male:Female ratio of about 2:1
- Up to 75% of patients with native valve involvement have identifiable risk factors

Cabell, 148
Braunwald, 1723
Time course of endocarditis

- **Acute**
 - Typically *Staphylococcus aureus*
 - Toxic
 - Progresses over days to weeks
 - Valvular destruction
 - Metastatic infection

- **Subacute**
 - Less toxic
 - Weeks to months
 - Pathogens
 - Viridans streptococci
 - Enterococci
 - Coagulase-negative staphylococci
 - Gram-negative coccobacilli
Risk factors for native valve endocarditis

- Rheumatic heart disease
- Congenital heart disease
- Mitral valve prolapse
- Degenerative heart disease
- Asymmetrical septal hypertrophy
- Intravenous drug abuse
Mitral Valve Prolapse

- High prevalence
 - 2-4% of general healthy population
 - 20% of young women
- 7-30% of Native valve endocarditis without IVD

- Incidence
 - 4.6 per 100,000 patient years without murmur
 - [0.004%/year]
 - 52 per 100,000 patient years with murmur
 - [0.05%/year]
Rheumatic Heart Disease

- Declining in incidence
 - 20-25% of endocarditis cases in 1970’s
 - 7-18% of endocarditis cases in 1980’s
- Commonly involves
 - Mitral valve in women
 - Aortic valve in men
- Absolute risk 380-440 per 100,000 patient-years [0.4%/year]

Braunwald, 1724
AHA 2007
Congenital Heart Disease

- Accounts for
 - 10-20% of endocarditis cases in young adults
 - 8% of cases in older adults
- Common lesions
 - Patent ductus arteriosus
 - Ventricular septal defect
 - Bicuspid aortic valve
Intravenous drug use

- Risk of endocarditis 2-5 per 100 patient years
 - Higher risk than rheumatic disease or prosthetic valve
- 65-80% of IVD endocarditis population is male
- Average age 27-37
- Commonly involves tricuspid valve (46-78% of cases)
- *S. Aureus* involved in over 50% of cases
Prosthetic Valves

- Account for 10-30% of all endocarditis cases
- Risk is greatest in first 6 months after implant
 - “Early” endocarditis occurs in first 60 days
- Incidence about 5% at 5 years
- Risk declines over time
- Mechanical valve has higher risk than bioprosthesis initially
- After 1 year bioprosthesis is more risky than mechanical valve
Microbiology in a nutshell

- Any pathogen can cause endocarditis
- Common organisms
 - *Strep* viridians – 28%
 - *Staph aureus* – 28%
 - Other *Strep* species – 23%
 - Coag negative *Staph* – 7%
 - Gram-negatives – 4%
 - Other – 5%
 - No growth – 5%
- Drug resistance seen commonly in IV drug use
- *Staph aureus* incidence appears to be rising

*Cabell, 150
Braunwald, 8th ed*
Clinical presentation

Nonspecific symptoms and signs

- Fever
- Mitral or aortic regurgitation murmurs
- Splenomegaly (50% of cases)
- Microscopic hematuria
- Sepsis – especially in acute infective endocarditis
- Joint arthritis and arthralgias
- Chronic wasting – in subacute endocarditis
- Cutaneous signs are infrequent
Osler’s Nodes

- Tender violaceous nodules in pulp of fingers or toes
- Due to infective emboli or immune complex deposits

Fitzpatrick, 633
Petechnial Lesions

- Petechiae may appear on extremities, chest, or mucous membranes
Splinter Hemorrhage

- Due to rupture of fine subungual capillaries
- Usually 2-3mm long in long axis of nail
- Initially blue-purple in color, change to brown of black in 1-2 days
- Move distal with nail growth
- Trauma is the most common cause; 20% of population have them

Fitzpatrick, 968; 971
Splinter Hemorrhage

A

B
Janeway Lesions

- Nontender
- Small hemorrhagic macules or nodules
- Commonly on palms or soles

Fitzpatrick, 630-31
Roth Spots

- Red retinal hemorrhage
- Pale center
Clinical Presentation
Cardiac signs and symptoms

- Heart failure – especially unexplained in young pt
- Pericarditis – uncommon, often the result of abscess or fistulous tract formation
- Abnormal echocardiogram
Clinical Presentation

Complications of endocarditis

- Septic pulmonary emboli
 - Commonly in tricuspid valve endocarditis due to IV drug use
 - May cause chest pain and dyspnea
 - Pulmonary fleeting patchy infiltrates on chest x-ray

- Stroke – due to embolism of vegetation or thrombus

- Renal failure – rare complication due to sepsis, embolism, or immune complex reaction

- Peripheral vascular embolism

Crawford, 164-6
Endocarditis and Embolism

- Up to 75% of embolic events occur prior to diagnosis or treatment
- 50-65% of clinically evident emboli involve the CNS, especially in middle cerebral artery distribution
- Embolism risk decreases after 1 week of antibiotics
- Surgery indicated for 2 or more embolic events
Prosthetic Valve Endocarditis

- Early endocarditis occurs within 60 days of surgery
 - More common in patients needing reoperation or long ventilator support
 - Commonly involves *S. aureus* or fungal species
 - Acute presentation, 65% mortality

- Late endocarditis occurs more than 60 days postop
 - Subacute presentation
 - Typical subacute organisms

- Prosthetic valve endocarditis can cause mechanical failure due to abscess, valve dehiscence, paravalvular leaks

Crawford, 163
Duke Criteria - Diagnosis

- **Definite Endocarditis**
 - Positive histology or culture from vegetation
 - Two major criteria
 - One major and three minor criteria
 - Five minor criteria

- **Rejected**
 - Firm alternative diagnosis
 - Resolution after ≤ 4 days of antibiotics

- **Possible Endocarditis**
Duke criteria - Major

1) More than one positive blood culture typical for endocarditis

2) Evidence of endocardial involvement
 - New regurgitation murmur
 - Echocardiogram with oscillating mass, abscess or valve dehiscence
Major Criteria

- **Positive blood culture**
 - Typical microorganism for infective endocarditis from two separate blood cultures
 - Viridans streptococci, *Streptococcus bovis*, HACEK group or
 - *Staphylococcus aureus* or community-acquired enterococci in the absence of a primary focus, or
 - Persistently positive blood culture, defined as recovery of a microorganism consistent with infective endocarditis from:
 - Blood cultures (≥2) drawn more than 12 hr apart, or
 - All of three or a majority of four or more separate blood cultures, with first and last drawn at least 1 hr apart
 - Single positive blood culture for *Coxiella burnetii* or antiphase I IgG antibody titer >1:800

- **Evidence of endocardial involvement**
 - Positive echocardiogram (TEE advised for PVE or complicated infective endocarditis)
 - Oscillating intracardiac mass, on valve or supporting structures, or in the path of regurgitant jets, or on implanted material, in the absence of an alternative anatomical explanation, or
 - Abscess, or
 - New partial dehiscence of prosthetic valve, or
 - New valvular regurgitation (increase or change in preexisting murmur not sufficient)

Braunwald, 8th ed
Duke criteria - Minor

1) Cardiac risk factor including IV drug use
2) Fever $\geq 100.4^\circ\text{ F}$
3) Vascular manifestation
4) Immunologic phenomena
5) Echocardiogram consistent with endocarditis but not meeting major criterion
6) Positive blood culture not meeting major criterion or serologic evidence of organism
Minor Criteria

- Predisposition: predisposing heart condition or intravenous drug use
- Fever $\geq 38.0^\circ C$ (100.4$^\circ F$)
- Vascular phenomena: major arterial emboli, septic pulmonary infarcts, mycotic aneurysm, intracranial hemorrhage, conjunctival hemorrhages, Janeway lesions
- Immunological phenomena: glomerulonephritis, Osler nodes, Roth spots, rheumatoid factor
- Microbiological evidence: positive blood culture but not meeting major criterion as noted previously[*] or serologic evidence of active infection with organism consistent with infective endocarditis
Diagnostic Imaging

- Echocardiography
- Chest Xray
- CT
- MRI
- Nuclear
Chest Xray

- Nonspecific findings
- Cardiomegaly
- Nodular infiltrates
 - Tricuspid valve endocarditis causing septic emboli

Sachdev, 192
Braunwald, 1730
CT and MRI
Still Mostly Experimental

- Primarily evaluate brain for complications
- Isolated CT case reports
 - Large aortic root abscess and AV fistula
- MRI can potentially diagnose complications of aortic root aneurysms or abscesses

Sachdev, 192-193
Nuclear Imaging

- Tagged WBC scans have been used
 - Can identify vegetations
 - Nonspecific
 - High false negative
- Case reports suggest that positive scan can be used to detect local complications of endocarditis
- Useful to detect metastatic septic embolism
Echocardiography

- Major Duke criteria
- Diagnose and management of infective endocarditis
- Vegetations – detected in 67% of “definite” cases by Duke criteria
 - Irregular shape
 - Occur on low-pressure side of turbulent jet
 - Atrial side in mitral and tricuspid regurgitation
 - Ventricular side in aortic and pulmonic regurgitation
 - May occur on other nonvalvular locations
Vegetation characteristics

- Large vegetation (>10mm) has 3 times risk of embolization compared to small ones

- Prolapsing vegetations or extravalvular involvement carries higher risk of heart failure, brain embolization, need for valve replacement

- However, poor interobserver reproducibility of these characteristics

Valvular location

- Small series show 26% mortality of aortic location vs. 16% with mitral location
- Aortic valve endocarditis more resistant to antibiotic therapy, more likely to need surgery
- Mitral valve endocarditis, especially anterior leaflet, has highest incidence of embolization
Mitral valve vegetation
Mitral valve vegetation with perforation
Mitral valve vegetation with perforation
Aortic valve vegetation
Aortic valve vegetation
Tricuspid valve vegetation
TEE Tricuspid vegetation
Echocardiographic mimics

- Sterile vegetations (marantic endocarditis)
 - Libman-Sacks endocarditis
 - Systemic malignancy
- Myxomatous valves
- Cardiac tumors
- Degenerative thickening
- Lambl’s excrescence – small, multiple filamentous tags on heart valves found in 70-90% of adults at autopsy

Sachdev, 188-189
Myxomatous mitral valve

Flail myxomatous mitral valve prolapsing into left atrium

Nanda, 90
Lambl’s Excrecence
Echocardiography

TTE vs. TEE

- Transthoracic
 - 18-63% sensitivity
 - Can rule out endocarditis only with good quality images and a low pre-test probability
 - Low sensitivity for detecting complications of endocarditis

- Transesophageal
 - 48-100% sensitive
 - Indicated in all cases of suspected prosthetic valve endocarditis
Nonbacterial Thrombotic Endocarditis
Libman-Sacks Endocarditis

- Etiology
 - Hypercoagulable state
 - Endothelial injury
- Found in 1.3% of patients at autopsy
 - Advanced age, malignancy, **lupus**, valvular heart disease, indwelling catheters are all risk factors
- Can convert to infective endocarditis
Device associated endocarditis
Catheter associated endocarditis
Overview of Medical Treatment

- Target therapy to blood culture
- Bactericidal antibiotics
 - β-lactam preferred
 - Monotherapy for MRSA with 1st generation cephalosporin is feasible
 - Vancomycin less bactericidal than penicillins
- Therapy for >4 weeks
 - Studies involving 2 week courses generally not as efficacious
Anticoagulation and Endocarditis

somewhat controversial

- Anticoagulation not indicated in native valve endocarditis
- In prosthetic valve endocarditis due to *Staph Aureus*, it may be beneficial to stop anticoagulation during the acute phase
- Aspirin therapy does not reduce embolic complications, and may increase bleeding

Sexton, 280
Indications for Surgery

- Heart failure refractory to medical treatment
 - NYHA class 3-4 due to endocarditis
 - Caused by aortic or mitral regurgitation (acute or subacute)
- Prosthetic valve endocarditis (most cases)
 - Medical management may suffice if
 - Late onset infection (>12 months after prosthesis)
 - Low virulence organism (viridians step, HACEK, enterococci)
 - No evidence of invasive infection
- Local invasive complications
 - Periannular extension, abscess, mycotic aneurysm, pseudoaneurysm, fistula
 - Heart block may herald local extension
Indications for Surgery

- 2 or more Major embolic events
 - A recent stroke presents higher operative risk (CVA extension)
 - Prefer to perform surgery at least 10-14 days after CVA
- Major valve dysfunction
 - Valve obstruction
 - Regurgitation
 - Leaflet perforation
- Resistance to antibiotic therapy
 - Persistent bacteremia after 7 days of antibiotics
 - Exclude extracardiac foci of infection
 - Recurrent fever is common, not necessarily an indication of antibiotic failure
Surgical Considerations

- Surgery needed in 25-30% in acute phase, 20-40% in subacute phase
- No prerequisite for antibiotics before surgery
 - Equivalent mortality (8.5%) for patients having surgery before 10 days and after 10 days of antibiotics
- Consider early surgical intervention with aggressive pathogen (*Staph Aureus*, fungal sp.)
- Device removal almost always required for device related endocarditis
Prognosis

- Overall mortality of 20-25%
- Patients with surgical intervention have 61% survival at 10 years
- Risks of high mortality
 - Elderly
 - Aggressive pathogen (S. Aureus)
 - Presence of embolism
 - More extensive valve damage
 - Renal involvement
 - Longer duration of endocarditis
Diagnostic Algorithm

- TEE indicated for suspected prosthetic valve endocarditis
- TTE can rule in endocarditis
- TTE can only rule out endocarditis with good quality images and a low pre-test probability

Braunwald, 8th ed
Endocarditis Prophylaxis
Endocarditis prophylaxis Redefined 2007

- **Why update the guidelines?**
 - IE is much more likely to result from frequent exposure to random bacteremias associated with daily activities than from bacteremia caused by a dental, GI tract, or GU tract procedure.
 - Prophylaxis may prevent an exceedingly small number of cases of IE, if any, in individuals who undergo a dental, GI tract, or GU tract procedure.
 - The risk of antibiotic-associated adverse events exceeds the benefit, if any, from prophylactic antibiotic therapy.
 - Maintenance of optimal oral health and hygiene may reduce the incidence of bacteremia from daily activities and is more important than prophylactic antibiotics for a dental procedure to reduce the risk of IE.
Guidelines seek a balance

Why did they change them???

- Prophylaxis recommended for patients with highest risk of infection and/or highest risk of complications
- Risk of death from penicillin anaphylaxis is estimated at 15-25 per million (33% with known allergy)
- Estimated 5370 minutes of bacteremia per month in dentulous people (based on chewing, brushing teeth, flossing)
- Estimated 6 to 30 minutes of bacteremia from a tooth extraction
Antibiotic prophylaxis with dental procedures is recommended only for patients with cardiac conditions associated with the highest risk of adverse outcomes from endocarditis, including:

- Prosthetic cardiac valve
- Previous endocarditis
- Congenital heart disease only in the following categories:
 - Unrepaired cyanotic congenital heart disease, including those with palliative shunts and conduits
 - Completely repaired congenital heart disease with prosthetic material or device, whether placed by surgery or catheter intervention, during the first six months after the procedure*
 - Repaired congenital heart disease with residual defects at the site or adjacent to the site of a prosthetic patch or prosthetic device (which inhibit endothelialization)
- Cardiac transplantation recipients with cardiac valvular disease

*Prophylaxis is recommended because endothelialization of prosthetic material occurs within six months after the procedure.
Which Dental procedures need prophylaxis?

- All dental procedures that involve manipulation of gingival tissue or the periapical region of teeth, or perforation of the oral mucosa

- Antibiotic prophylaxis is NOT recommended for the following dental procedures or events:
 - routine anesthetic injections through noninfected tissue
 - taking dental radiographs
 - placement of removable prosthodontic or orthodontic appliances
 - adjustment of orthodontic appliances
 - placement of orthodontic brackets
 - shedding of deciduous teeth and bleeding from trauma to the lips or oral mucosa.
Other procedures

- Endocarditis prophylaxis no longer recommended for gastrointestinal and genitourinary procedures
- Prophylaxis is recommended for respiratory procedures (except routine bronchoscopy without biopsy)
- Recommended for procedures involving manipulation of infected skin, skin structure or musculoskeletal structure
Notable lesions no longer recommended for prophylaxis

- Rheumatic heart disease
- Valvular stenosis
- Valvular regurgitation
Prophylaxis Regimen

<table>
<thead>
<tr>
<th>Situation</th>
<th>Agent</th>
<th>Regimen — Single dose 30–60 minutes before procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adults</td>
<td>Children</td>
</tr>
<tr>
<td>Oral</td>
<td>Amoxicillin</td>
<td>2 gm</td>
</tr>
<tr>
<td>Unable to take oral medication</td>
<td>Ampicillin OR Cefazolin or ceftriaxone</td>
<td>2 g IM or IV*</td>
</tr>
<tr>
<td>Allergic to penicillins or ampicillin – Oral regimen</td>
<td>Cephalexin**† OR Clindamycin OR Azithromycin or clarithromycin</td>
<td>2 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic to penicillins or ampicillin and unable to take oral medication</td>
<td>Cefazolin or ceftriaxone† OR Clindamycin</td>
<td>1 g IM or IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pearls for the Boards

- Association of *Strep. Bovis* with GI malignancy, especially colon cancer
- Identify patients who should and should not receive endocarditis prophylaxis
 - Prosthetic valves
 - Prior endocarditis
 - Cardiac transplant with valvular disease
 - Unrepaired cyanotic congenital heart disease
 - Completely repaired cyanotic CHD for 1st 6 months after repair
- Recognize that a prosthetic valve with endocarditis will most likely need surgical treatment
References

References
